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Abstract 

Chiral objects, viewed as distorted derivatives of achiral ones, may be represented by 
points in a configuration space that is spanned by a set of  symmetry coordinates derived 
for the symmetry group of  the achiral object of highest symmetry. We propose a measure 
(d) that quantifies the displacement of the representative point for a chiral object away 
from the nearest point representing an achiral object in such a multi-dimensional configuration 
space. If the symmetry coordinates are chosen so as to yield a similarity invariant measure, 
then the values d i obtained for a series of i chiral objects can serve as a basis for comparing 
the degrees of chirality of these objects. The chirality of triangles in E z is studied by this 
method, and it is shown that the most chiral triangle in terms of this measure corresponds 
to one that is infinitely flat, and that may be approached but is never attained. This result 
is compared to others obtained previously for the same system by the use of  different 
measures of chirality. 

1. Introduction 

According to Kelvin's original definition, an object is termed chiral if, and only 
if, it is not superposable on its mirror image (enantiomorph) [1]. Clearly, while 
enantiomorphs cannot be superposed on one another so as to make all their parts 
coincide, they may nonetheless be superimposed, i.e. placed upon one another. There 
have been a number of suggestions, based on this notion, that the chirality of an 
object may be quantified by evaluating the extent to which its two enantiomorphs 
may be superimposed or overlapped. For instance, in a straightforward extrapolation 
of Kitaigorodskii's idea [2], it has been proposed that the fraction of non-overlapping 
volumes, under the condition of  maximal overlap of the enantiomorphs, may be 
regarded as a measure of chirality: if the objects are achiral, then there will be no 
non-overlapping volumes, and the fraction will thus have a value of  zero [3]. The 
notion of maximal overlap of enantiomorphs also underlies a scheme by Kuzmin and 
Stelmakh, who have attempted to obtain a measure of chirality by superimposing two 
enantiomorphous sets of  point masses representing enantiomeric molecules in a 

*On leave from the Department of  Chemistry, University of the Western Cape, Bellville 7530, South 
Africa. 

© LC. Baltzer AG, Scientific Publishing Company 



256 T.P.E. Auf der tteyde et al., Desymmetrization and chirality 

reduced system of coordinates [4]. We term measures - such as the fraction mentioned 
above - whose underlying rationale is the maximal overlap of enantiomorphs overlap 
measures of chiraliry. 

An alternative approach that is based on symmetry considerations alone may 
be developed from the recognition that chiral objects are distinguished from achiral 
ones by the absence in their point groups of improper rotations, or symmetry operations 
of the second kind (or, i, or Sn) [51. A desymmetrization of an achiral object into a 
chiral one may be brought about by shifting points in the former that are invariant 
under improper rotations into positions where they would no longer remain invariant 
(thereby destroying symmetry elements of the second kind in the achiral object). A 
precedent for this type of approach exists, in a qualitative sense, in a definition of 
an achiral object as (pro)P-chiral if it can be systematically desymmetrized by at most 
p steps into a chiral object [6(a)]. In this paper, we show how such a desymmetrization 
may be quantified, and how this quantification may serve as a basis for expressing 
a degree of chirality. 

2. Method 

The problem of quantifying the distortion of a chemical molecule from a more 
symmetrical reference structure has been addressed by Murray-Rust, Btirgi and Dunitz 
[7,8], who set out to attach a quantitative meaning to statements of the type "the 
molecule has approximate Ta symmetry". In terms of their method, a given nuclear 
configuration is represented by a point in a multi-dimensional space spanned by a 
set of symmetry coordinates (Si) for the (more symmetric) reference structure. The 
spatial coordinates of the representative point are given by displacements along the 
Si's, which are linear combinations of the internal coordinates that transform according 
to the irreducible representations of tile molecular symmetry (point) group (G) of the 
reference structure, with the origin of the space representing that structure. The 
magnitudes of these displacements then serve as the basis for quantifying the deformation 
of the observed configuration away from the reference structure. 

In general, any point that lies on an S i transforming as the irreducible representation 
Fj(G) is transformed into itself by those operations of G whose character in Fj(G) 
equals that of the identity operation. The point group composed of these operations 
is called the kernel K(G, ~)  of the representation. In general, more than one class 
of elements is represented in ~ by the same matrix. By contrast, the set of distinct 
matrices forms another group H(G, Fj), the homomorphic image of G, with K serving 
as the kernel of the homomorphism. Points lying on planes or in spaces transforming 
as degenerate representations may also be transformed into themselves by operations 
(R) not belonging to the kernel. These operations, together with those of the kernel, 
constitute a group called the co-kernel CoK(G, ~ ,  R). Kernel symmetries are easily 
determined from character tables, while co-kernel symmetries have been derived by 
McDowell [911, and have later been listed together with the symmetries of H by Murray- 
Rust, Btirgi and Dunitz [8]. 
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Such a multi-dimensional nuclear configuration sPace for the molecular point 
group G is thus composed of a number of subspaces - one for each irreduciNe 
representation F / -  whose symmetries are those of the groups H(G, Fj). Each subspace 
is spanned by symmetry coordinates which necessarily have the kernel symmetry of  
that representation, and for degenerate representations the subspaces will also contain 
coordinates whose symmetry conforms to that of  the co-kernel. Since every point in 
the space uniquely defines a given nuclear configuration, i.e. a given set of  bond 
angles and distances, it follows that points lying along these coordinates represent 
nuclear configurations whose symmetries conform to those of the respective kernels 
and co-kernels. Some of these symmetries will be achiral, in the sense that their 
groups contain improper rotations that are prerequisites for achirality [5]. A point (C) 
representing a given chiral nuclear configuration (M) may therefore be thought of 
as lying in a general position in the configuration space, a certain distance d from 
the nearest point on an achiral coordinate. This point, which we denote pl-C, represents 
a (pro)l-chiral configuration whose single-step desymmetrization leads to the chiral 
configuration M. In the context of the configuration space, this desymmetrization 
corresponds to the displacement of a representative point from p~-C to C, and the 
distance d can thus be taken as a measure of this desymmetrization. 

We have previously [101 defined a measure ofchirality z(M) as a continuous, 
real-valued, and similarity invariant function of the molecular model M, in the interval 
[ -1 ,  11, such that z(M) = 0 i f M  is achiral, and z(M) = - z ( M ' ) ,  where M'  is the 
enantiomorph of M. The degree ofchirality was defined as [ z (M)  I. If the symmetry 
coordinates have been constructed so as to give a similarity invariant representation 
of M (i.e. a representation that is dependent only on the shape, and not the size of 
M), then the measure d will also be similarity invariant. Now, if it can be shown that 
the configuration space thus constructed is bounded as a consequence of geometrical 
restrictions on the values adopted by the internal coordinates, then the range of d may 
be normalized to the interval [0, 1]. The measure d then has all the attributes of a 
measure for the degree of chirality and, since it is not premised on the generation 
of the enantiomorphous object (M'), d constitutes what we call a non-overlap measure 
for the degree of chirality. 

A configuration space constructed by the use of a set of symmetry coordinates 
that are not similarity invariant differs in an important way from a multi-dimensional 
space that is spanned by similarity invariant symmetry coordinates. In the former, 
each point represents a unique nuclear configuration, characterized by a unique set 
of  internal coordinates. In the latter, by contrast, each point represents a family of  
configurations all of  the same shape, but of different sizes. In this sense, the latter 
type of space would be more correctly referred to as a "conformation space", where 
the term "conformation" is used here as a general description of the shape of a 
molecule [1 1]; in the context of  our approach, the term is therefore not limited to 
its common meaning as a characteristic of torsional isomers. 

We shall illustrate the above approach by analyzing the conformation space of  
triangles confined to the Euclidean plane (E2), and we shall derive the "most chiral" 
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triangle in terms of this method. The system of triangles was chosen for the reason 
that two recently completed analytic studies of the chirality of  triangles - employing 
both overlap and non-overlap measures - offer an interesting comparison [10, 12, 13]. 

3. Conformation space of triangles in E 2 

The shape of a triangle (or, in the context of this paper, its conformation), is 
fully defined by a minimum of two variables (two angles), although a third (a side) 
would be necessary to fix its size (or configuration). In order to construct a suitable 
set of  symmetry coordinates, a reference geometry of sufficiently high symmetry 
needs to be chosen, so that all possible deformations of the "molecule" may be 
mapped in the parameter space. Scalene, isosceles, and equilateral triangles in E 2 
belong to the two-dimensional point groups C 1, D 1, and D 3, respectively [ 10]. As the 
achiral reference group, we chose G = D 3, a two-dimensional group that is isomorphic 
with C3v, in that the three ~Yv elements in E 3 correspond to lines of  reflection in E 2. 
Our choice of internal coordinates oe, ,6, and y - the angles subtended at the respective 
vertices A, B, C - as a basis set ensures that the symmetry coordinates will be 
similarity invariant, since the angles determine the shape of the triangle only, and not 
its size. They transform as A~ + E; three symmetry coordinates derived by standard 
methods [14, 15] may be chosen as: 

S 1 (A1) = (1/qt-3)(k a + Aft+  At ) ,  

S2a(E) = (1/1/t-6)(2~0~--/~/3--,~y), 

S2b (E )  = 

where A refers to the deviation from the angles in the reference structure (the D 3 
equilateral triangle). Note, however, that the values of the reference angles are important 
only for the totally symmetric representation, since they cancel out in the others; for 
these, one can consequently use the internal angles (a,/3, y) in evaluating displacements 
along the S/s. 

For the one-dimensional representation, K = G and H = 1, since any point 
along the totally symmetric coordinate must be transformed into itself [8]. Following 
Murray-Rust, Btirgi and Dunitz [8], we will indicate the symmetry group (H) of  the 
space spanned by the degenerate representation by the Hermann-Mauguin  symbol 
3m (where m, in this case, refers to a line of reflection). We do so in order to avoid 
confusion between the group H and the groups G, K, or CoK; for the latter, the 
Schoenfliess symbols will be used. Accordingly, the degenerate representation has 
K = C 1 and CoK = D1, the latter corresponding to the C, co-kernel symmetry of  C3v 
in E 3. 

Clearly, there must be a redundancy amongst the symmetry coordinates, since 
one of  the internal coordinates is dependent on the other two. Indeed, it can be seen 
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that the positive and negative deviations of the angles in the A 1 representation will 
cancel each other out, since their sum must always remain zero. The similarity 
invariant space of  triangles is therefore adequately represented in terms of  just the 
E coordinates. A projection of  this space onto the plane defined by SEa and S~, is 
shown in fig. 1. 
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Fig. 1. Diagram of the conformation space for triangles. The dimensions 
of S2a and S~  are any angular measures. The space has symmetry 3m, with 
point O as the point of threefold rotation, and lines m, m', m" representing 
the lines of reflection. Section OSP corresponds to one of the six asymmetric 
units. The significance of points S, T, U, and V is discussed in the text. 

4. Discussion 

The triangular conformation space QPR depicted in fig. 1 may be used to 
describe any deformation of  the equilateral triangle. The boundaries are the lines RQ, 
QP, and PR, which result naturally from the limitations placed on the values that the 
internal angles of a triangle may adopt. Point Q, for example, represents a triangle 
with a = fl = 0 ° and y =  180 ° , point P has a = 180 ° and fl = y =  0 °, with QP hence 
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representing all configurations for which fl = 0 ° and a + y =  180 °. Such triangles, 
in which at least one angle is 0 ° and all three vertices are thus collinear, will be called 
"degenerate". Similarly, lines RQ and PR correspond to degenerate triangles with 
ct = 0 ° and y = 0 °, respectively. On the other hand, line QS - excluding points Q 
and S - maps all (non-degenerate) isosceles triangles for which a = fl between the 
extremes of  the degenerate triangles S ( a  = fl = 90 °, y= 0 °) and Q. The six asymmetric 
units that compose the conformation space reflect the six possible permutations of  
a, r ,  and 7, and they are, of  course, a function of the 3m symmetry of the point group 
H(D 3, E). 

The lines of reflection m, m' ,  and m" [corresponding to the coordinates 
S2b = - d-3 $2~, S2b = 0, and Sz~ = q3 S2a, respectively] constitute special positions 
of the conformation space. These lines map achiral geometries that maintain 
D 1 co-kernel symmetries, such that conformations along m have a = 7, those 
along rn' have fl = 2,, and those on rn" have ct = ft. We refer to these coordinates 
as achiral coordinates. 

A representative point C will therefore lie in a general position in the conformation 
space when it represents a given chiral triangle, while in the case of an achiral 
triangle the point will lie in a special position on one of the achiral coordinates 
- or at the special point O if it is equilateral. Any systematic desymmetrization of  
an equilateral triangle to yield a given non-equilateral one would correspond to 
a displacement of the representative point at O until it becomes coincident with C. 
This displacement, in turn, may be broken down into the resultant of  two consecutive 
displacements, the first proceeding along any achiral coordinate and the second 
(which may be zero) in a perpendicular direction away from it. In terms of  the 
definition [6(a)] of  prochirality mentioned above, the D 3 equilateral triangle may hence 
be seen to be (pro)2-chiral, the origin corresponding to a point that we therefore 
denote as p2-C. Note that any point C in the conformation space will have this as 
its (pro)2-chiral point. (In accord with the method of [6(a)], two is the maximum 
number of steps in which an achiral object in E 2 may be desymmetrized into a chiral 
one.) All triangles represented by points on the achiral coordinates, except for the 
point p2-C, are (pro)l-chiral. 

The displacement of C along an achiral coordinate therefore measures the 
desymmetrization of the (pro)2-chiral geometry, while the perpendicular displace- 
ment away from it measures the desymmetrization of the (pro)Lchiral geometry, 
i.e. the deformation of the chiral triangle away from its closest achiral precursor. 
Since each asymmetric unit is bordered by two achiral coordinates,  there will 
in general be two distances (d 1 and d2) that could be considered. However, 
we are interested only in knowing the displacement from the nearest achiral 
point, and hence define our measure of the degree of chirality d as the shorter 
of  the two, i.e. 

d = min{dl, d2). 
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The shortest perpendicular distance of  a general point C to either of  the achiral 
coordinates bordering an asymmetric unit may readily be calculated; in the asymmetric 
unit OSP (for which a > fl > ~,), for example, the distances to the coordinates m" and 
m" are d 1 = (1/q2)(A,6- A)') and d 2 = ( 1 / q 2 ) ( A a -  Aft). Note that the reference angle 
once again cancels out, so that the internal coordinates themselves may be substituted 
for the deviations, and the distance is thus simply a function of the differences 
between the angles. 

The most chiral triangle will be the one whose representative point is at a 
maximum distance from the achiral coordinates, and it may be evaluated as follows. 
Consider, for example, the asymmetric unit OSP (see fig. 1): line OT (which corresponds 
to all triangles with ,6 = 60 °) is the bisector of angle ZSOP,  and thus represents all 
geometries that are equidistant from the two achiral coordinates bordering this unit. 
The perpendicular projections from point T onto the achiral coordinates are the maximum 
perpendicular distances that can be realized within this asymmetric unit, and hence 
represent the maximum displacement from achirality, i.e. the maximum degree of  
chirality. The triangle corresponding to point T would thus appear to be the most 
chiral. Figure 2(a) depicts graphically the deformation of the equilateral triangle that 

f~ v 

0t 

1~ v 
1-1/~ 1/.42 

(a) (b) 
Fig. 2. (a) Deformation of the equilateral triangle towards maximum chirality 
as mapped by line OT in fig. 1, and (b) the corresponding deformation as 
mapped by the chirality function employed in [10, 12]. Note that in (b) both fl 
and ytend to zero, as the ratio of sides a:b:c tends toward 1:1/4-2:(1 - 1H2). 

is mapped by line OT, and it shows that the limit of this deformation, point T, corresponds 
to a degenerate triangle in which the vertices A and B (at angles a and ,6, respectively) 
and the corresponding sides a and b have become coincident, but with a = 120 °, 
,6 = 60 °, and )' = 0 °. 

This result gives rise to contradictory interpretations: on the one hand, in the 
limit at point T the internal angles indicate that the triangle has a chiral conformation 
( a  ~: ,6 ~ 7; a ~ 7), whereas on the other hand, one might assume that when two of  
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the vertices are coincident, i.e. when two sides are coincident and therefore equal, 
an achiral, though degenerate, triangle obtains. This contradiction arises out of  the 
contrasting perspectives that are employed in making the respective deductions. The 
former corresponds to an interpretation that keeps rigidly within the (mathematical) 
confines of  the symmetry coordinate measure, while the second goes beyond this 

- as the use of the word "assume" shows - in that it is informed by other geometrical 
principles, namely, that a triangle with two equal sides must be isosceles, and therefore 
achiral. A second complication arises from the fact that whereas it is possible to 
construct a degenerate triangle from the coordinates of  point T, the reverse mapping 
is not feasible: when two vertices are coincident, it is impossible to define uniquely 
the three angles a, ]3, and % and to map such degenerate triangles onto the conformation 
space. 

The only way in which these difficulties can be avoided is by excluding the 
boundaries of  the conlormation space from consideration as triangles, i.e. by defining 
triangles in terms of three non-collinear points. Under this condition, the most chiral 
triangle emerges as one that is infinitely fiat and approachable only as a limit, with 
one angle of  60 °, another that is arbitrarily close to zero, and a third that is arbitrarily 
close to 120 °. As a further consequence of the above restriction, the configuration 
space of  triangles, while bounded, is rendered open. 

The unique nature of tile boundaries of  the conformation space may give rise 
to an apparently counterintuitive interpretation, since the results suggest that as the 
equilateral triangle is deformed into progressively more chiral triangles, an achiral 
geometry - a one-dimensional line segment - is approached more and more closely. 
However,  the loss of  chirality in the limit is a natural consequence of the reduction 
in dimensionality that occurs at point T, since chirality is an extrinsic property and 
depends on the dimension in which a body is embedded: when the dimension of  the 
space is higher than that of the body, the body must be achiral [10]. 

The two p L c  points (U, S; see fig. 1) on m" and m" whose displacements in 
the direction of T both yield, in the limit, the most chiral triangle, respectively represent 
an isosceles triangle with a = 120 ° and fl = % = 30 °, and the degenerate isosceles 
triangle mentioned above. In both cases, the p L C  --) T displacement is accompanied 
by a total absolute angular change of  60 °, with d I = d 2 = d = (1/,/2)(60 °) -- 42.4 °. 
This value defines the least upper bound (i.e. supremum) for d in the conformation 
space for triangles. The most chiral right triangle in the asymmetric unit OSP lies 
at point V on the line OT, with c~= 90 ° , 13= 60 ° , 7 =  30 ° , and the repre- 
sentative points for its (pro)l-chiral conformations ( a  = 90 ° , 13 = 45 ° , y =  45 ° ) 
and ( a  = 75 °, 13 = 75 °, % = 30 °) on m'  and m", respectively, are both equidistant 
from V, with d = (1/',72)(30 °) = 21.2 °. 

5. Compar i son  with previous results 

In the first of  our prior studies of  the chirality of  triangles [10, 12], we employed 
an overlap measure of  chirality that was determined by maximizing the intersecting 
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area [T*] resulting from the superimposition in E 2 of a given triangle and its enantio- 
morph, and then taking the function 

z ( T )  = 1 - {[T*]/[T]} ,  

where [T] is the area of the triangle, as the degree of chirality. Clearly, this function 
is zero for achiral geometries (T* = T), while it tends towards unity for chiral triangles, 
and it is also similarity invariant. Our second study [13] utilized a chirality product 
function which takes the form 

P ( e )  = (a - b ) ( b  - c ) ( c  - a), 

where a, b, c are the sides (e) of the triangle. This function may be transformed into 
the similarity invariant measure of chirality [13] 

z ( e )  = (1 - b / a ) ( l  - c /b) (1  - a /c) .  

The exploration of the conformation space of triangles that we are presenting 
here is in some respects comparable to the previous investigation [13] of (what we 
there called) the shape space of triangles by means of the measure z ( e ) .  Our use of 
the term "conformation space" in place of "shape space" is a deliberate attempt to 
couch the discussion and the illustration of the technique presented in this paper in 
its proper historical context, and in a language that is intended to unambiguously 
illustrate its chemical relevance. After all, Murray-Rust, Bfirgi and Dunitz originally 
proposed the use of symmetry coordinates explicitly for the description of  " n u c l e a r  

a r r a n g e m e n t s  o f  m o l e c u l e s  [our emphasis] that can be regarded as being distorted 
versions of  more symmetrical reference structures" [8]. 

Both of the spaces mentioned above contain six segments, but only in the 
conformation space discussed in this paper do they constitute true asymmetric units, 
in the sense that the complete space may be constructed by the operations of the 
group 3m on any one of the units. The six segments of the shape space comprise three 
pairs that arise from the labeling convention [13] adopted for the triangular vertices 
(or the sides, or the angles) in the following manner. Consider, for example, applying 
the labels (a, b, and c) to the sides of a given scalene triangle, with a < b < c. 
When the labels a and b are transposed, the sense of cyclic directionality of  the labels 
has to reverse. Therefore, in order to preserve the same sense for both inequalities 
a < b < c and b < a < c, as required by the convention, enantiomorphs of the triangle 
will have to be considered. The two segments of the shape space in which the 
representative points for the enantiomorphs will be found hence represent enantio- 
morphous triangles labeled in the same sense, and according to the two permutations 
above. The same argument applies to the other two pairs of  permutations, with a and 
b as the longest sides, respectively. Thus, as a consequence of the labeling convention, 
the shape space of the preceding study [13] maps heterochiral triangles, while the 
conformation space of the present study maps homochiral triangles. A conformation 
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space could be constructed to represent heterochiral triangles by adopting a similar 
labeling convention, but the distinction between enantiomox~hs would then be reflected 
only in different positions of their representative points, not by differences in the 
measure d: as a measure for the degree of chirality, d is an unsigned quantity and 
therefore does not carry any information about handedness. With z(e) ,  on the one 
hand, enantiomorphous triangles have differently signed values of the measure, and 
the subdivision of  the shape space into heterochiral segments is therefore much more 
meaningful than it would be in the present study. 

The three measures differ in what they reveal to be the most chiral right 
triangle, and in the degree of chirality of this triangle as a fraction of  the supremum 
on the value of the chirality measure. The overlap measure yields a triangle with 
a = 90 °,/3 = arcsin 2 -1/3 = 52.5 °, and ) '= arccos 2 -1/3 = 37.5 °, while the geometric 
chirality product yields one with a = 90 °, /3 = 71.2 °, and ~,= 18.8 °. Expressed as a 
fraction of the supremum on the value of the chirality measure, the degrees of  
chirality of the former two right triangles are =0.67 and =0.07, respectively, while 
for the most chiral right triangle found in the present study ( a =  90 ° , /3=  60 °, 
T = 30°), the fraction has a value of 0.5. 

Both previously employed measures yield the most chiral triangle as an infinitely 
flat one, as does the measure developed in the present study. However, the limit that 
is approached is not the same in all three cases: the measures d and z (e )  both yield 
the limiting triangle depicted in fig. 2(a), whose ratio of sides a:b:c  = 1:1:0, while 
the overlap function z(T)  yields the limiting triangle shown in fig. 2(b), for which 
the ratio is 1 :1 / '~  :(1 - 1 / 4 ) .  In the first study [10, 12], the degenerate triangle with 
altitude zero had to be excluded since its area is zero, leading to an indeterminate 
expression for z(T) .  With the chirality product function, only the degenerate triangle 
corresponding to the limit of  the deformation depicted in fig. 2(a) had to be excluded, 
since only in this case does one of the sides become zero, leading to a similarly 
indeterminate expression for z(e) .  For all other degenerate triangles, no such problems 
were encountered since three line segments can be identified for any triangle whose 
vertices are non-coincident. Indeed, we made the point that in the limit of  a completely 
flat triangle, z ( e )  becomes a measure of one-dimensional chirality [13]. Despite the 
differences between them, all three chirality measures have independently revealed 
the most chiral triangle to be one that is infinitely f iat  and that can be approached 
only as a limit. Whether a similar result might obtain for systems in higher dimensions, 
e.g. a tetrahedron in E 3, is a question that yet remains to be answered, and that we 
intend to address in a subsequent publication. 

Irrespective of the answer to the question posed above, we wish to emphasize 
a point that may have been lost through our choice of an extremely abstract "molecule" 
on which to demonstrate the applicability of this method. The approach that we have 
outlined in the present paper is generally applicable to any geometric object, and may 
as readily be applied to quantifying the degree of chirality of distorted tetrahedral 
molecular models in E 3 as it was here to a selection of hypothetical triangles restricted 
to E 2. Furthermore, the present method does not require the generation of the 



T.P.E. Auf  der tteyde et al., Desymmetrization and chirality 265 

enantiomorphous image; all that is necessary is the choice of  a reference geometry 
and a set of  basis parameters that will make the derived symmetry coordinate 
representation similarity invariant. 
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